

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0128 of 7 June 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Mungo Injection system MIT-Hybrid Plus for concrete

Bonded anchor for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 13 / Plant 13

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-17/0128 issued on 20 February 2017

European Technical Assessment ETA-17/0128

Page 2 of 31 | 7 June 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0128

Page 3 of 31 | 7 June 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Mungo Injection system MIT-Hybrid Plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT-Hybrid, MIT-Hybrid Plus and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load	See Annex			
(static and quasi-static loading)	C 1, C 2, C 4, C 6			
Characteristic resistance to shear load	See Annex			
(static and quasi-static loading)	C 1, C 3, C 5, C 7			
Displacements	See Annex			
(static and quasi-static loading)	C 8 to C 10			
Characteristic resistance for seismic performance	See Annex			
category C1	C 11 to C 14			
Characteristic resistance and displacements for seismic	See Annex			
performance category C2	C 11, C 12, C 15			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0128

Page 4 of 31 | 7 June 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

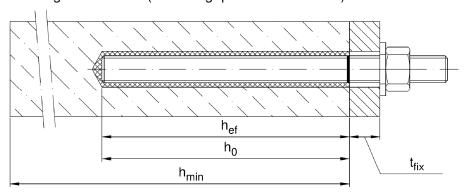
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

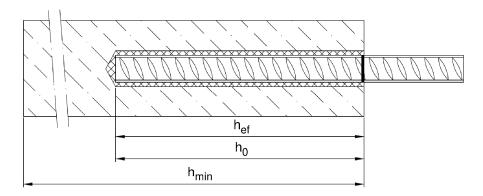
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

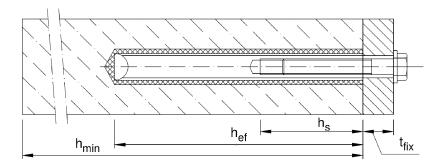
Issued in Berlin on 7 June 2019 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

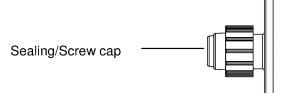
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

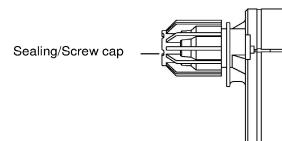
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

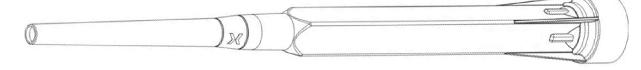
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

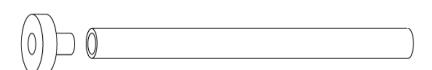
Mungo Injection system MIT-Hybrid Plus for concrete	
Product description Installed condition	Annex A 1


Cartridge: MIT-Hybrid, MIT-Hybrid Plus

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Imprint: MIT-Hybrid, MIT-Hybrid Plus, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

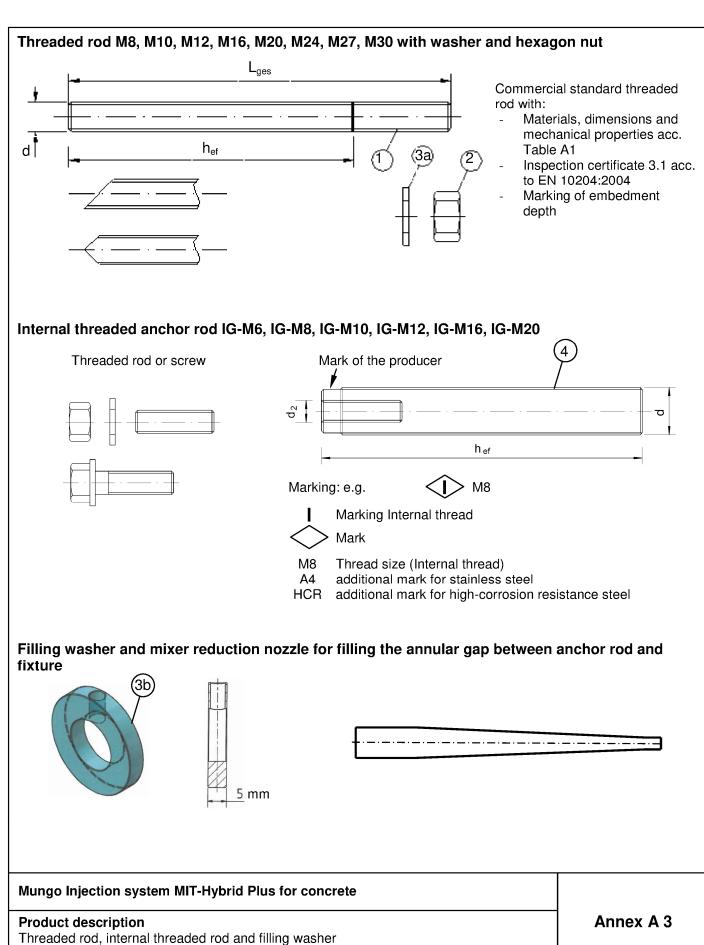
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



Imprint: MIT-Hybrid, MIT-Hybrid Plus, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

Piston plug and mixer extension

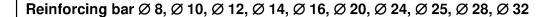

Mungo Injection system MIT-Hybrid Plus for concrete

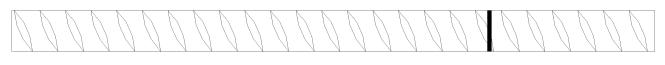
Product description

Injection system

Annex A 2

Та	ble A1: Materials									
Part	Designation	Material								
- zi - ho	Steel, zinc plated (Steel acc. to EN 10087:1998 or EN 10263:2001) - zinc plated ≥ 5 μm acc. to EN ISO 4042:1999 or - hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or - sherardized ≥ 45 μm acc. to EN ISO 17668:2016									
	- 10 μπ - 1	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture				
				$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%				
1	Threaded rod	4-		$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8%				
		acc. to EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%				
		211100 000 112010		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%				
			8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾				
		acc. to	4	for threaded rod c						
2	Hexagon nut	EN ISO 898-2:2012	5	for threaded rod c						
		Steel, zinc plated, hot-dip	8	for threaded rod c						
3a	Washer	(e.g.: EN ISO 887:2006, E				N ISO 7094:2000)				
3b	Filling washer	Steel, zinc plated, hot-dip				,				
	Internal threaded	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture				
4	anchor rod	acc. to		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%				
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%				
Stai	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 n corrosion resistance steel	01 / 1.4404 / 1.4571 / 1.436	2 or ⁻	1.4578, acc. to EN	10088-1:2014)					
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture				
1	Threaded rod ¹⁾⁴⁾		50	uit	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾				
		acc. to EN ISO 3506-1:2009	70		/	A ₅ ≥ 12% ³⁾				
		211100 0000 1.2000	80	f _{uk} = 800 N/mm ²	$f_{yk} = 600 \text{ N/mm}^2$	$A_5 \ge 12\%^{3)}$				
	4140	acc. to		for threaded rod c						
2	Hexagon nut 1)4)	EN ISO 3506-1:2009	70							
80 for threaded rod class 80 A2: Material 1.4301 / 1.4303 / 1.4307 / 1.4567 or 1.4541, acc. to EN 10088-1:2014 A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014 HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)										
3b	Filling washer	Stainless steel A4, High c								
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture				
4	Internal threaded	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ > 8%				
	anchor rod ¹⁾²⁾	EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A ₅ > 8%				
1)	Property class 70 for threaded	rode up to M24 and Intornal t	hroac	lod anchor rode up t	1G-M16					


¹⁾ Property class 70 for threaded rods up to M24 and Internal threaded anchor rods up to IG-M16,


Mungo Injection system MIT-Hybrid Plus for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ A₅ > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists $^{4)}$ Property class 80 only for stainless steel A4

- Minimum value of related rip area f_{R.min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material						
Reinf	forcing bars							
1	1 EN 1009-1-1 9007 N N 19010 ANNOV C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$						

Mungo Injection system MIT-Hybrid Plus for concrete

Product descriptionMaterials reinforcing bar

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Mungo Injection system MIT-Hybrid Plus for concrete

Intended Use
Specifications

Annex B 1

Table B1: Installation parameters for threaded rod											
Anchor size			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Diameter of element		$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned i	nstallation d _f	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through installation d _f		[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	ment	T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀					
Minimum spacing s _{min}			[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	nce	c _{min}	[mm]	35	40	45	50	60	65	75	80

Tor application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.
An aximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

Rebar size	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	12	14	16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Enective embedment depth	h _{ef,max}		160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	$h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$									
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

Table B3: Installation parameters for Internal threaded rod

Anchor size	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	d = d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Enective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18	22
Maximum torque moment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3 ≥ 100	0 mm mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Mungo Injection system MIT-Hybrid Plus for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools															
- 7	THEFT			- mmm											
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CA	l	ь h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu						
[mm]	[mm]	[mm]	[mm]	міт-	[mm]	[mm]	міт-	1		1					
M8			10	BS10	11,5	10,5			•						
M10	8	IG-M6	12	BS12	13,5	12,5		No plua	required						
M12	10	IG-M8	14	BS14	15,5	14,5		No plug	required						
	12		16	BS16	17,5	16,5									
M16	14	IG-M10	18	BS18	20,0	18,5	VS18								
	16		20	BS20	22,0	20,5	VS20								
M20		IG-M12	22	BS22	24,0	22,5	VS22								
	20		25	BS25	27,0	25,5	VS25	h _{ef} >	h _{ef} >						
M24		IG-M16	28	BS28	30,0	28,5	VS28			all					
M27			30	BS30	31,8	30,5	VS30	250 mm 250 mm							
	24 / 25		32	BS32	34,0	32,5	VS32								
M30	28	IG-M20	35	BS35	37,0	35,5	VS35								
	32		40	BS40	43,5	40,5	VS40								

MAC - Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

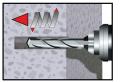
Drill hole depth (h_0) : < 10 d_s Only in non-cracked concrete

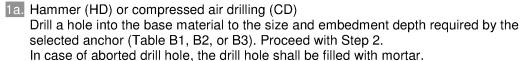
CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

HDB - Hollow drill bit system

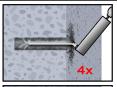
Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Mungo MHP-Clean / MHX-Clean hollow drill bit and a class M vacuum with minimum negative pressure of 230 hPa and flow rate of minimum 61 l/s.

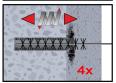

Mungo Injection system MIT-Hybrid Plus for concrete	
Intended Use	Annex B 3
Cleaning and setting tools	

Installation instructions

Drilling of the bore hole


1b. Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

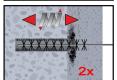
Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

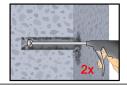
2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

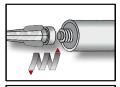


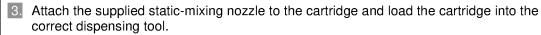
2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.


CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

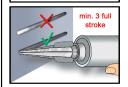
Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion.
 If the bore hole ground is not reached with the brush, a brush extension must be used.

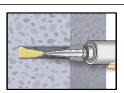

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

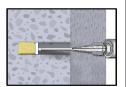

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

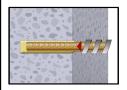
Mungo Injection system MIT-Hybrid Plus for concrete	
Intended Use	Annex B 4
Installation instructions	

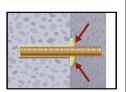
Installation instructions (continuation)




For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.

- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

9. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complety filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optioned filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Mungo Injection system MIT-Hybrid Plus for concrete Intended Use Installation instructions (continuation) Annex B 5

Table B5:	Table B5: Maximum working time and minimum curing time									
Concrete	temp	erature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete					
- 5 °C	to	- 1 °C	50 min	5 h	10 h					
0 °C	to	+ 4 °C	25 min	3,5 h	7 h					
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h					
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h					
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min					
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min					
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min					
Cartridge	e temp	erature	+5°C to +40°C							

Mungo Injection system MIT-Hybrid Plus for concrete	
Intended Use Curing time	Annex B 6

Т	able C1: Characteristic values resistance of threaded		el ten	sion r	esistar	nce ar	nd ste	el she	ear			
Siz	ze			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561	
Ch	aracteristic tension resistance, Steel failu	re ¹⁾	•					,				
Ste	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Ste	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-	
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-	
Ch	aracteristic tension resistance, Partial fac	tor ²⁾										
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)				
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5				
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6				
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87								
Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-] 1,6												
Ch	paracteristic shear resistance, Steel failure		•								•	
_	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	9 (8)	15 (13)	21	39	61	88	115	140	
evel	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Į į	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140	
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	-	-	
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-	
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
Vith lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk.s	[Nm]	19	37	66	167	325	561	832	1125	
 	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-	
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-	
Cr	naracteristic shear resistance, Partial facto	r ²⁾										
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7				
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5				
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8				
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6				
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3				

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
2) in absence of national regulation

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Performances

Anchor size tl		cteristic valu			М 8				M 20		M27	M30	
Steel failure	in caaca				1 0	1 10		100	1111 20	1012-7	10121	11100	
Characteristic	tension re	N _{Rk,s}	[kN]			$A_{s} \cdot f_{l}$	_{Jk} (or s	ee Tab	le C1)				
Partial factor			γ _{Ms,N}	[-]	see Table C1								
	II-out an	d concrete failure	1110,11										
		stance in non-crac		C20/25									
I: 80°C	C/50°C	Dry, wet	τ _{Rk,ucr}	[N/mm²]	17	17	16	15	14	13	13	13	
Temperature range III: 120	°C/72°C	concrete and flooded bore	τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11	
E III: 160	0°C/100°	hole	^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0	
Characteristic	bond res	stance in cracked	concrete C20/	25									
I: 80°C	C/50°C	Dry, wet	^τ Rk,cr	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
Temperature range III: 120	°C/72°C	concrete and flooded bore	^τ Rk,cr	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
্ট III: 160	0°C/100°	C hole	τ _{Rk,cr}	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
			C25/30	1				1,	02		·		
			C30/37					1,	04				
Increasing fact	ors for co	oncrete	C35/45					1,	07				
$ \Psi_{C} $			C40/50		1,08								
			C45/55		1,09								
			C50/60	1,10									
Concrete con	e failure		1.										
Non-cracked c			k _{ucr,N}	[-]	11,0								
Cracked concr			k _{cr,N}	[-]	7,7								
Edge distance			c _{cr,N}	[mm]	1,5 h _{ef}								
Axial distance			s _{cr,N}	[mm]	2 c _{cr,N}								
Splitting	1												
	h/h	l _{ef} ≥ 2,0			1,0 h _{ef}								
Edge distance	2,0	$0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$								
	h/h	n _{ef} ≤ 1,3			2,4 h _{ef}								
Axial distance	1		s _{cr,sp}	[mm]					cr,sp				
Installation fa	ctor				•				•				
		MAC					1,2			1	NPA		
for dry and wet	t concrete			r 1				1	,0				
		HDB	γ _{inst}	[-]					,2				
for flooded bore hole CAC									,4				
Mungo Injec	tion sys	tem MIT-Hybrid	Plus for cond	crete									

Z34902.19 8.06.01-172/19

Characteristic values of tension loads under static and quasi-static action

Annex C 2

Anchor size threaded rod	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure without lever arm		•		•		•	•		•	•
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ Rk,s	[kN]			0,6 •	A _s • f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ Rk,s	[kN]			0,5 •	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm	l									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ∙ f _{uk}	(or see	Table C	C1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]			•	see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]	1,0							
Concrete edge failure										
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300mm)$							
Outside diameter of fastener	d _{nom}	[mm]] 8 10 12 16 20 24 27						30	
Installation factor	γ _{inst}	[-]		'	'		1,0		-	

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 3

Anchor size internal t	hreaded	d anchor rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Steel failure ¹⁾					10 0	10.1	10 10		10	1.0		
Characteristic tension resistance, 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123			
Steel, strength class		8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength	class 5.8	3 and 8.8	γ _{Ms,N}	[-]			1	,5		•		
Characteristic tension Steel A4 and HCR, Str			N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor			γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out ar												
Characteristic bond res	istance	in non-cracked	concrete	C20/25						1		
를 I: 80°C/50°C	80°C/50°C		τ _{Rk,ucr}	[N/mm²]	17	16	15	14	13	13		
III: 160°C/100°C		concrete and flooded bore	τ _{Rk,ucr}	[N/mm ²]	14	14	13	12	12	11		
년 III: 160°C/100°	C	hole	τ _{Rk,ucr}	[N/mm²]	11	11	10	9,5	9,0	9,0		
Characteristic bond res	istance	in cracked con	crete C20)/25		•						
e I: 80°C/50°C		Dry, wet	τ _{Rk,cr} [N/mm²]		7,5	8,0	9,0	8,5	7,0	7,0		
III: 160°C/100°C		concrete and flooded bore	τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0		
년 III: 160°C/100°	C	hole	τ _{Rk,cr} [N/mm²]		5,5	6,0	6,5	6,0	5,5	5,5		
				25/30				02				
	_		C30/37		1,04							
Increasing factors for c	oncrete			35/45	1,07							
Ψ_{C}			-	10/50 15/55	1,08 1,09							
				50/60				10				
Concrete cone failure	<u> </u>		00	70/00			٠,	10				
Non-cracked concrete			k _{ucr,N}	[-]			11	1,0				
Cracked concrete			k _{cr,N}	[-]			7	,7				
Edge distance			c _{cr,N}	[mm]			1,5	h _{ef}				
Axial distance			s _{cr,N}	[mm]			2 c	cr,N				
Splitting failure				•								
	h/h _{ef}	≥ 2,0					1,0	h _{ef}				
Edge distance 2,0 > h/h _{ef}		h/h _{ef} > 1,3	c _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \right)$	$\sqrt{5} - \frac{h}{h_{ef}}$				
h/h _{ef} ≤ 1,3					2,4 h _{ef}							
Axial distance			s _{cr,sp}	[mm]		2 c _{cr,sp}						
Installation factor			1 5.,54					,- -				
		MAC				1,2			NPA			
for dry and wet concret	е	CAC	100				1	,0				
HDB		HDB	γ _{inst}	[-]	1,2							
		for flooded bore hole CAC						,4				

Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For IG-M20 strength class 50 is valid

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

tic val	ues of s	hear	loads u	nder s	tatic an	d quas	i-static	action
ed anch	or rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
)								
5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
and 8.8	$\gamma_{Ms,V}$	[-]				1,25		
	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
	γ _{Ms,V}	[-]			1,56			2,38
	k ₇	[-]				1,0		
5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
and 8.8	γ _{Ms,V}	[-]				1,25		
	M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
	γ _{Ms,V}	[-]			1,56			2,38
	k ₈	[-]				2,0		
	γ _{inst}	[-]				1,0		
	•	•	•					
	If	[mm]		min(h _{ef} ; 12 • 0	d _{nom})		min(h _{ef} ; 300mm
	d _{nom}	[mm]	10 12 16 20 24 30					30
	γinst	[-]	1,0					
	5.8 8.8 and 8.8	Section Sec	S.8	Section Sect	IG-M 6 IG-M 8 I	IG-M 6 IG-M 8 IG-M 10 IG-M 10 IG-M 8 IG-M 10 IG	IG-M 6 IG-M 8 IG-M 10 IG-M 12	5.8 V ⁰ _{Rk,s} [kN] 5 9 15 21 38 8.8 V ⁰ _{Rk,s} [kN] 8 14 23 34 60 and 8.8 Y _{Ms,V} [-] 1,25 V ⁰ _{Rk,s} [kN] 7 13 20 30 55 Y _{Ms,V} [-] 1,56 k ₇ [-] 1,0 5.8 M ⁰ _{Rk,s} [Nm] 8 19 37 66 167 8.8 M ⁰ _{Rk,s} [Nm] 12 30 60 105 267 and 8.8 Y _{Ms,V} [-] 1,25 M ⁰ _{Rk,s} [Nm] 11 26 52 92 233 Y _{Ms,V} [-] 1,56 k ₈ [-] 2,0 Y _{inst} [-] 1,0

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

Ancho	r size reinfo	orcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa	ailure											•			•
Charac	teristic tensi	on resi	stance	N _{Rk,s}	[kN]					A _s •	f _{uk} 1)				
Cross s	section area			A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial	factor			γ _{Ms,N}	[-]					1,	4 ²⁾				
Combi	ned pull-ou	t and c	oncrete fail												
Charac	teristic bond	l resista	ance in non-c	racked con	crete C20/2	25									
iture	I: 80°C/50°	С	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Temperature range	II: 120°C/7	2°C	and flooded	^τ Rk,ucr	[N/mm²]	13	12	12	12	12	11	11	11	11	11
Ten	III: 160°C/1	00°C	bore hole	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Charac	teristic bond	l resista	ance in crack	ed concrete	e C20/25						•				
]					[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
nperat range	II: 120°C/7	2°C	and flooded	^τ Rk,cr	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ten	III: 160°C/1	00°C	bore hole	^τ Rk,cr	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
					5/30					1,	02				
					0/37						04				
	sing factors f	or cond	crete		5/45						07				
Ψ_{C}					0/50						08				
					5/55						09				
Concre	ete cone fai	lura		C5	0/60					1,	10				
	acked concr			k _{ucr,N}	[-]					1-	1,0				
	d concrete			k _{cr,N}	[-]						,7				
	listance			C _{cr,N}	[mm]						h _{ef}				
Axial di				s _{cr,N}	[mm]						cr,N				
Splittir				CI,IN	[]						CI,IN				
	-3	h/h _{ef} 2	≥ 2,0							1,0	h _{ef}				
Edge d	listance	2,0 >	h/h _{ef} > 1,3	c _{cr,sp}	[mm]				2 · h	_{ef} $\left(2\right)$,5 – -	$\left(\frac{h}{h_{ef}}\right)$			
		h/h _{ef} s	≤ 1,3							2,4	h _{ef}				
Axial distance				s _{cr,sp}	[mm]					2 c	cr,sp				
nstallation factor			•	•											
	MAC							1,2					NPA		
for dry	or dry and wet concrete CAC		γ_{inst}	[-]						,0					
	1 11 1		HDB	1,11121							,2				
	or flooded bore hole CAC The flux shall be taken from the specification in absence of national regulation					1,4									

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 6

Table C7: Characteristic	values of	shear I	oads	und	er st	atic	and	quas	si-sta	atic ac	tion	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•	•	•	•					
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,50	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	·											
Characteristic bending moment	M ⁰ Rk,s	[Nm]					1.2	w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure	•	<u>.</u>	•									
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure	-	•										
Effective length of fastener	I _f	[mm]			min(h _e	_{ef} ; 12 ·	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]		•				1,0				

 $[\]stackrel{1)}{\text{s}}$ f_{uk} shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 7

Anchor size threaded re	od		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked concrete (C20/25 under	static and quasi	-static a	ction						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048	
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-stat	ic action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \ \cdot \tau;$

τ: action bond stress for tension

Table C9: Displacements under shear load²⁾ (threaded rod)

Anchor size threa	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Non-cracked and cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-factor} \quad \cdot \ V;$

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 8

 $[\]delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$

Table C10: Displa	cements u	nder tension	load ¹⁾ (Ir	nternal t	hreaded	rod)						
Anchor size Internal thre	eaded rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20				
Non-cracked concrete C	Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046				
80°C/50°C	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060					
Temperature range II:	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048					
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062				
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179				
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184				
Cracked concrete C20/2	5 under static	and quasi-static	action									
Temperature range I:	$\delta_{ m N0}$ -factor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106				
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137				
Temperature range II:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110				
120°C/72°C $\delta_{N\infty}$ -fac		[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143				
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412				
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor τ ; τ: action bond stress for tension

Table C11: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inte	rnal threaded rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked and	cracked concret	e C20/25 unde	r static and	quasi-stati	c action			
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$ $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

V: action shear load

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances	Annex C 9
Displacements under static and quasi-static action (Internal threaded anchor rod)	

Table C12:	Displacem	ents under t	ensio	n load	d ¹⁾ (rek	ar)						
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	C20/25 und	er static and qu	asi-stat	ic actic	n							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} &\cdot \tau; \\ &\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-factor} &\cdot \tau; \end{split}$$
 τ : action bond stress for tension

Displacements under shear load²⁾ (rebar) Table C13:

Anchor size rein	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
For concrete C2	-static	action										
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

V: action shear load

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances	Annex C 10
Displacements under static and quasi-static action (rebar)	

8.06.01-172/19 Z34904.19

Ancho		Jad ::= :!				N# O	NA 40	M 12	NA 40	NA OO	NAO 4	NACZ	NACCO	
Steel f	r size threac	iea roa				M 8	IVI 10	WI 12	IM 16	M 20	M24	M27	M30	
	teristic tensi	on resist	ance	N	FI N 17				10.	NI				
(Seism				N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}								
Charac (Seism	cteristic tensions	on resist	ance,											
	strength class	s 8.8		N _{Rk,s,eq,C2}	[kN]	NPA			1,0 •	N _{Rk.s}		NF	PA	
Stainle	ess Steel A4 a		₹,	110,3,04,02	[]					1111,5				
	th class ≥70													
Partial		1		γ _{Ms,N}	[-]				see Ta	ible C1				
	•		ncrete failure nce in cracked a	ınd non-cracke	d concrete (0.20/25								
		Tosistai	lice in cracked a	τ _{Rk,eq,C1}	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
nge	I: 80°C/50°C		°C/50°C		[N/mm ²]		PA	3,6	3,5	3,3	2,3		 PA	
e e			Dry, wet	^τ Rk,eq,C2	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
Temperature range	II: 120°C/72°C		concrete and flooded bore	τ _{Rk,eq,C1}	[N/mm ²]	NPA		3,1	3,0	2,8	2,0		PA	
mpe .			hole	τ _{Rk,eq,C1}	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Te	III: 160°C/1	III: 160°C/100°C		τ _{Rk,eq,C2}	[N/mm ²]		PA	2,5	2,7	2,5	1,8		PA	
Increas	sing factors for	or concre	±========= ete ψ _C	C25/30 to	C50/60	1,0								
Concr	ete cone fail	ure	-											
Non-cr	acked concre	ete		k _{ucr,N}	[-]				11	,0				
Cracke	ed concrete			k _{cr,N}	[-]				7	,7				
Edge d	listance			c _{cr,N}	[mm]					h _{ef}				
Axial d	istance			s _{cr,N}	[mm]				2 c	cr,N				
Splittir	ng													
		h/h _{ef} ≥	2,0						1,0	h _{ef}				
Edge d	listance	2,0 > h	n/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$								
		h/h _{ef} ≤	1,3			2,4 h _{ef}								
Axial d	istance	•		s _{cr,sp}	[mm]				2 c	cr,sp				
Install	ation factor				·					•				
for dry and wet concrete				1,0										
for drv	and wet cond	crete	HDB	- γ _{inst}	[-]					,2				

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1+C2)	Annex C 11

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure without lever arm		•			•	•	•	•		•		
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]				0,70	o∙v ⁰ Rk	i,s				
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	NPA 0,70 • V ⁰ _{Rk,s} NF						PA			
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm												
	M ⁰ Rk,s,eq,C1	No Performance Assessed (NPA)										
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[Nm]	No Performance Assessed (NPA)									
Concrete pry-out failure												
Factor	k ₈	[-]					2,0					
Installation factor	γinst	[-]					1,0					
Concrete edge failure	·											
Effective length of fastener	If	[mm]	$\min(h_{ef}; 12 \cdot d_{nom}) \qquad \min(h_{ef}; 30)$						300mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	γinst	[-]	1,0									
Factor for annular gap	$\alpha_{\sf gap}$	[-]				0,	5 (1,0) ¹⁾					

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1+C2)	Annex C 12

	(p	erforr	nance ca	tegory C	1)										
Ancho	r size reinf	orcing I	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa	ailure											4)			
Charac	cteristic tens	ion resis	stance	N _{Rk,s,eq}	[kN]					1,0 • A	s • f _{uk}				
Cross	section area			A _s	[mm²]	50	79	113	154	1	314	452	491	616	804
Partial	factor			γMs,N	[-]					1,	4 ²⁾				
	ined pull-οι														
Charac	cteristic bond	d resista	ance in cracl	ked and non-	-cracked co	ncrete	C20/	25	T	Ι	1	1	1	1	T
ture	I: 80°C/50°	C.C	Dry, wet	τ _{Rk,eq}	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	II: 120°C/7	2°C	concrete and flooded	^τ Rk,eq	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ter	III: 160°C/	100°C	bore hole	τ _{Rk,eq}	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Increas	Increasing factors for concrete ψ_{C} C25/3						•	•		1	,0				
Concre	ete cone fai	lure		'											
Non-cra	acked concr	ete		k _{ucr,N}	[-]	11,0									
Cracke	ed concrete			k _{cr,N}	[-]	7,7									
Edge d	listance			c _{cr,N}	[mm]					1,5	h _{ef}				
Axial di	istance			s _{cr,N}	[mm]					2 c	cr,N				
Splittir	ng				•										
		h/h _{ef} ≥	≥ 2,0							1,0	h _{ef}				
Edge d	listance	2,0 > 1	h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$									
		h/h _{ef} ≤	≤ 1,3							2,4	h _{ef}				
Axial di	istance	•		s _{cr,sp}	[mm]					2 c	cr,sp				
Installa	ation factor	ı			1										
for dry	and wet cor	ncrete	CAC								,0				
-			HDB	γinst	[-]						,2				
for floo	for flooded bore hole CAC									1	,4				

1) fuk shall be taken from the specifications of reinforc	ing bars
---	----------

in absence of national regulation

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 13

	Table C17: Characteristic values of shear loads under seismic action (performance category C1)												
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm			•	•	•								
Characteristic shear resistance	V _{Rk,s,eq}	[kN]	0,35 • A _s • f _{uk} ¹⁾										
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616						804				
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾										
Ductility factor	k ₇	[-]	1,0										
Steel failure with lever arm	·		•										
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]	No Performance Assessed (NPA)										
Concrete pry-out failure	•	•	•										
Factor	k ₈	[-]						2,0					
Installation factor	γinst	[-]						1,0					
Concrete edge failure	•		•										
Effective length of fastener	I _f	[mm]		1	min(h _e	_{ef} ; 12 •	d _{nom}	,)		min(h _{ef} ; 300	mm)	
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32	
Installation factor	γinst	[-]	1,0										
Factor for annular gap	$\alpha_{\sf gap}$	[-]					0,	,5 (1,0)3)				

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 14

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C18: Displ	Table C18: Displacements under tension load ¹⁾ (threaded rod)												
Anchor size threaded re	od		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Cracked concrete C20/2	25 under seis	mic C1 action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110			
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412			
160°C/100°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424			

Table C19: Displacements under tension load (rebar)

Anchor size reinfo	Anchor size reinforcing bar				Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Cracked concrete	C20/25 und	er seismic C1 ad	ction									
Temperature range I: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature range III: 160°C/100°C	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$; (τ : action bond stress for tension)

Table C20: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked and cracked concrete C20/25 under seismic C1 action										
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Table C21: Displacement under shear load¹⁾ (rebar)

Anchor size rein	forcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/25 under seismic C1 action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V^{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\begin{array}{l} \delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} \ \cdot \ V; \ \ (V: action \ shear \ load) \end{array}$

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances	Annex C 15
Displacements under seismic C1 action (threaded rods and rebar)	

Table C22: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded rod M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30										M 30
Cracked concrete C20/25 under seismic C2 action										
All temperature								NIE	NPA	
ranges	$\delta_{N,eq(ULS)}$ -factor	[mm/(N/mm ²)]	IN.	PA	0,140	0,150	0,110	0,150	INF	A

¹⁾ Calculation of the displacement

 $\delta_{\text{N,eq(DLS)}} = \delta_{\text{N,eq(DLS)}} \text{-factor} \cdot \tau;$

 $\delta_{N,eq(ULS)} = \delta_{N,eq(ULS)} \text{-factor} \cdot \tau; \qquad \qquad (\tau: action bond stress for tension)$

Table C23: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30
Cracked concrete C20/25 under seismic C2 action										
All temperature	$\delta_{V,eq(DLS)}$ -factor	[mm/kN]	l NII	٦,٨	0,27	0,13	0,09	0,06	NIT	٦.۸
ranges	$\delta_{V,ep(ULS)}$ -factor	[mm/kN]	NPA		0,27	0,14	0,10	0,08	NF	A

²⁾ Calculation of the displacement

 $\delta_{V,\text{eq}(\text{DLS})} = \delta_{V,\text{eq}(\text{DLS})}\text{-factor} \quad \cdot \ V;$

 $\delta_{V,eq(ULS)} = \delta_{V,eq(ULS)} \text{-factor} \quad V; \qquad \text{(V: action shear load)}$

Mungo Injection system MIT-Hybrid Plus for concrete	
Performances Displacements under seismic C2 action (threaded rods)	Annex C 16