

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0130 of 7 June 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Mungo Injection System MIT-Hybrid Plus for rebar connection

Systems for post-installed rebar connections with mortar

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 13 / Plant 13

21 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

ETA-17/0130 issued on 4 December 2017

European Technical Assessment ETA-17/0130 English translation prepared by DIBt

Page 2 of 21 | 7 June 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 7 June 2019

European Technical Assessment ETA-17/0130 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Mungo Injection system MIT-Hybrid Plus for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar MIT-Hybrid, MIT-Hybrid Plus are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2 and C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

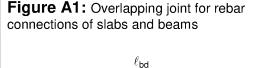
European Technical Assessment ETA-17/0130 English translation prepared by DIBt

Page 4 of 21 | 7 June 2019

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

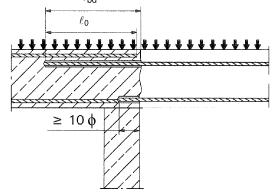
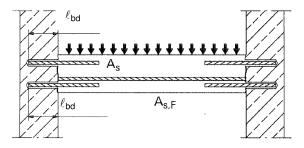
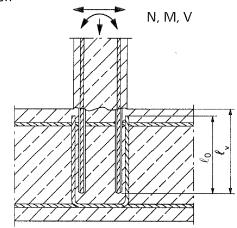
Issued in Berlin on 7 June 2019 by Deutsches Institut für Bautechnik

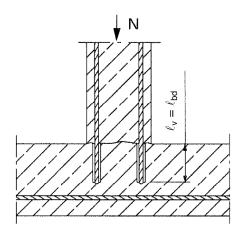

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

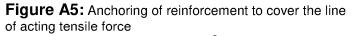
Page 5 of European Technical Assessment ETA-17/0130 of 7 June 2019

English translation prepared by DIBt

Installation post installed rebar


Figure A3: End anchoring of slabs or beams



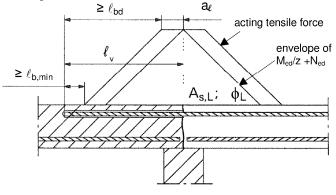

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

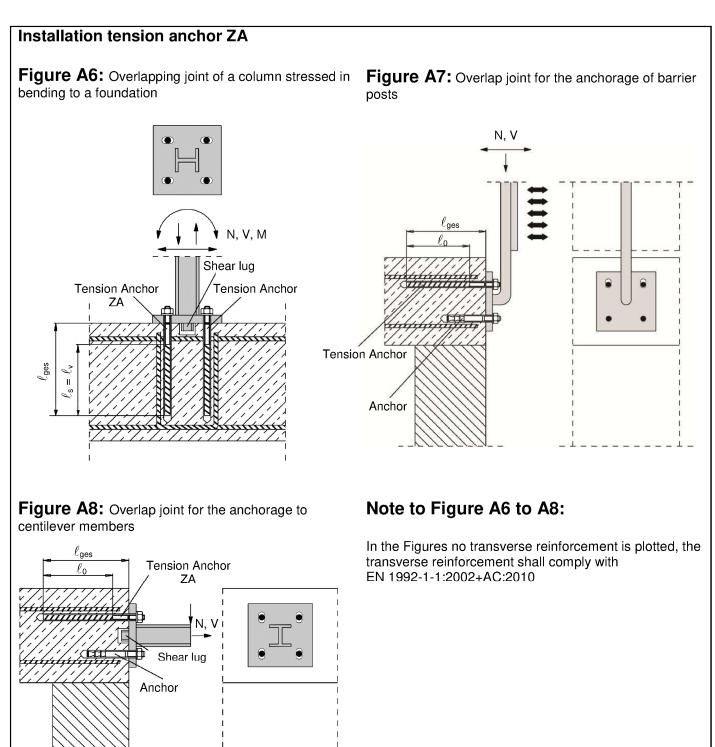
Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

Mungo Injection system MIT-Hybrid Plus for rebar connection


Product description Installed condition and examples of use for rebars

Annex A 1

Page 6 of European Technical Assessment ETA-17/0130 of 7 June 2019

English translation prepared by DIBt

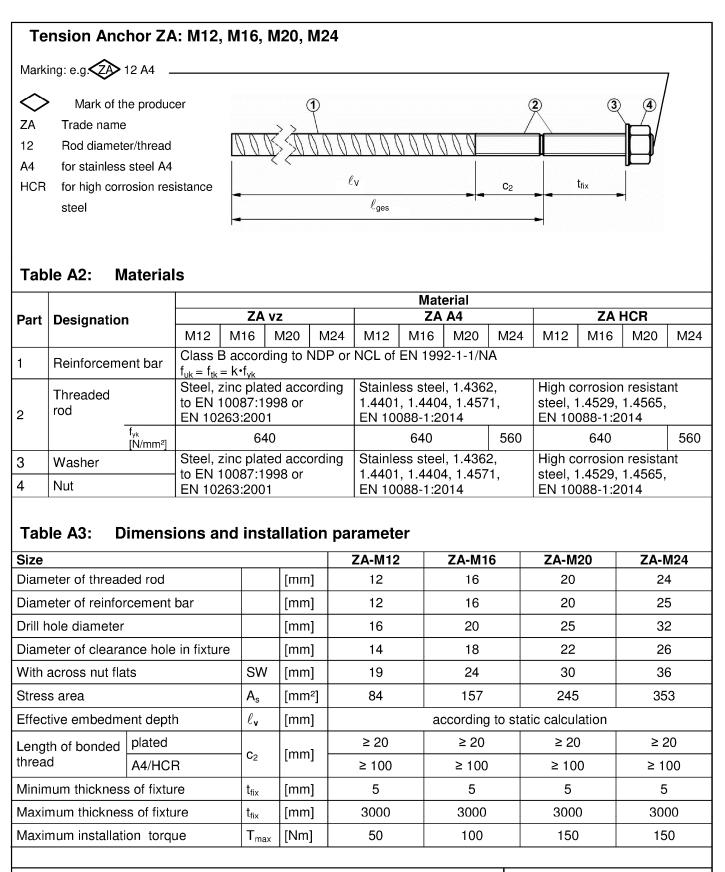
Mungo Injection system MIT-Hybrid Plus for rebar connection

Product description

Installed condition and examples of use for tension anchors ZA

Annex A 2

Page 7 of European Technical Assessment ETA-17/0130 of 7 June 2019



Mungo Injection system MIT-Hybrid Plus:	
300 ml up to 333 ml and 280 ml up to 333 ml and hazard-cod	-Hybrid, MIT-Hybrid Plus, notes, charge-code, shelf life, e, curing- and processing time on the temperature), optional with
235 ml, 345 ml and 825 ml cartridge	-Hybrid, MIT-Hybrid Plus, notes, charge-code, shelf life, e, curing- and processing time on the temperature), optional with
Static Mixer	
Piston plug and mixer extension	
Reinforcing bar (rebar): ø8 to ø32	
Tension Anchor ZA: M12 to M24	
0005300000000000	
Mungo Injection system MIT-Hybrid Plus for rebar connection	
Product description Injection mortar / Static mixer / Rebar / Tension Anchor ZA	Annex A 3

	14 - 10 00 04 -	05 -00 -00
Reinforcing bar (rebar): ø8, ø10, ø12, ø ⁻	14, ø16, ø20, ø22, ø24, ø	i25, ø28, ø32
 Minimum value of related rip area f_{R,min} according Rib height of the bar shall be in the range 0,05¢ s (\$\$\phi\$: Nominal diameter of the bar; h: Rip height of t 	≤ h ≤ 0,07φ	10
Table A1: Materials	Ι	
Designation	Material	
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$	
Mungo Injection system MIT-Hybrid Plus for reb	ar connection	
Product description Specifications Rebar		Annex A 4

Mungo Injection system MIT-Hybrid Plus for rebar connection

Product description

Annex A 5

Specifications Tension Anchor ZA

Page 10 of European Technical Assessment ETA-17/0130 of 7 June 2019

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Use conditions (Environmental conditions):

• Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel).

• Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

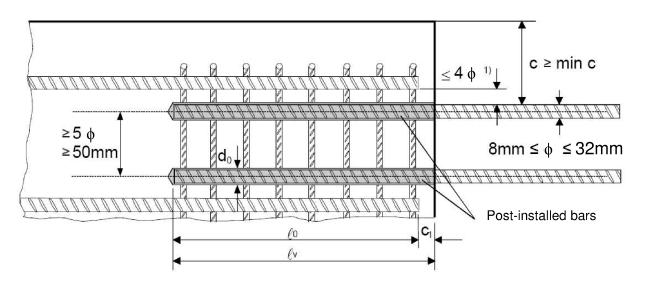
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- · Dry or wet concrete.
- · It must not be installed in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD) hollow drill (HDB) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).


Mungo Injection system MIT-Hybrid Plus for rebar connection

Intended use Specifications Annex B 1

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

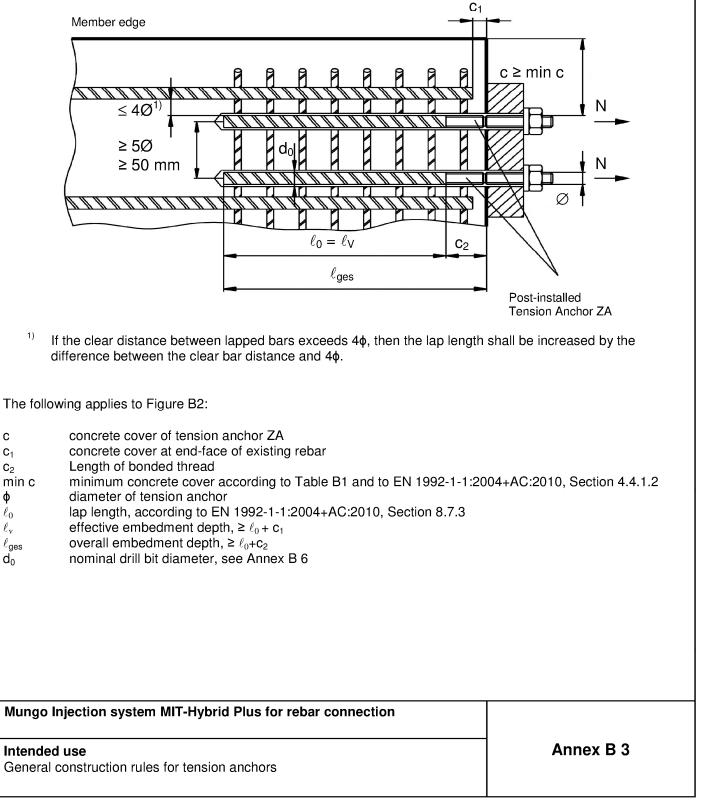
¹⁾ If the clear distance between lapped bars exceeds 4¢, then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c₁ concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 φ diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 6

Mungo Injection system	MIT-Hybrid Plus	for rebar	connection
------------------------	------------------------	-----------	------------

Intended use


General construction rules for post-installed rebars

Annex B 2

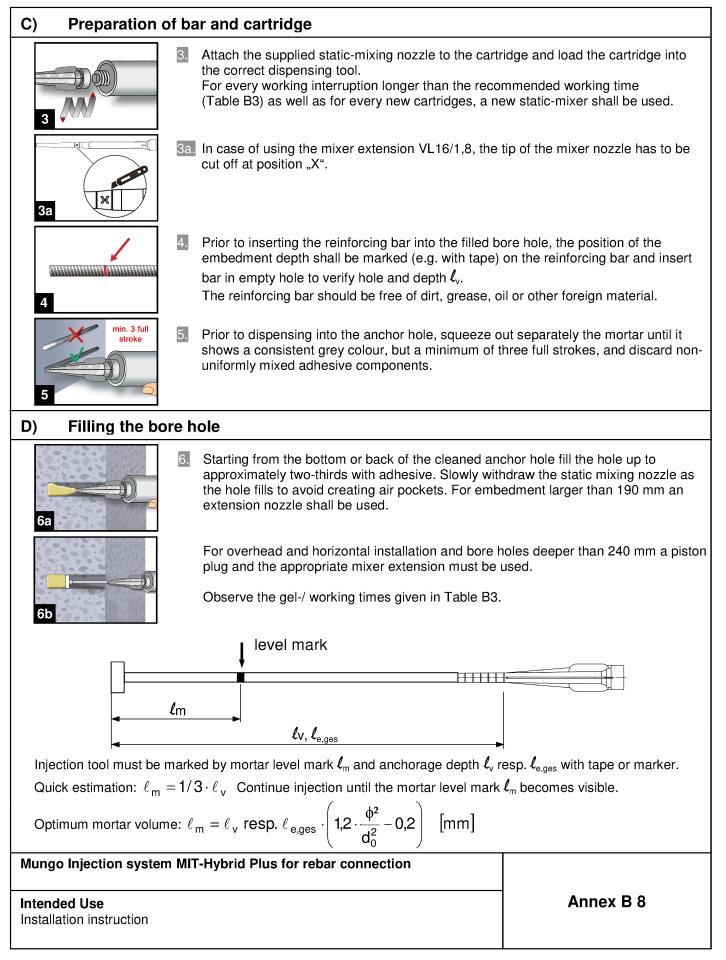
Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

depending	of drilling method		
Drilling method	Rebar diameter	Without drilling aid	With drilling aid
Hammer drilling (HD)	< 25 mm	$30 \text{ mm} + 0,06 \cdot \ell_v \ge 2 \phi$	$30 \text{ mm} + 0.02 \cdot \ell_{v} \geq 2 \phi$
Hollow drill bit system (HDB) ≥ 25 mm	$40 \text{ mm} + 0,06 \cdot \ell_{v} \geq 2 \phi$	$40 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2 \phi$
	< 25 mm	50 mm + 0,08 · ℓ_v	50 mm + 0,02 · ℓ_v
Compressed air drilling (CD) ≥ 25 mm	60 mm + 0,08 · ℓ_v	60 mm + 0,02 · ℓ_v
Comments: The minimu	B1 and Annex B3, Figure B2 Im concrete cover acc. EN 1992 Combedment depth <i>L</i> v,ma	2-1-1:2004+AC:2010 must be obse	erved
Rebar	Tension anchor	0 .	
φ	φ	$\ell_{v,max}$ [mm]	
8 mm		1000	
10 mm 12 mm	ZA-M12	1000 1000 ¹⁾ / 1200	
14 mm		1000 ¹ / 1400	
16 mm	ZA-M16	1000 ¹⁾ / 1600	
20 mm	ZA-M20	1000 ¹⁾ / 2000	
22 mm		1000 ¹⁾ / 2000	
24 mm	74.140.4	1000 ¹⁾ / 2000	
25 mm	ZA-M24	1000 ¹⁾ / 2000	
00 mm			
	nt depth for use with hollow o	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB)	
32 mm ¹⁾ maximum embedmer	rial temperature, gellin	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) ag time and curing time	Minimum curing tim
32 mm	rial temperature, gellin	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB)	e Minimum curing tim in wet concrete
32 mm ¹⁾ maximum embedmer Fable B3: Base mater	rial temperature, gellin Gelling working time ¹⁾	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) og time and curing time Minimum curing time	
32 mm ¹⁾ maximum embedmer Table B3: Base mater Concrete temperature	rial temperature, gellin Gelling working time ¹⁾ C 50 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) og time and curing time Minimum curing time in dry concrete	in wet concrete
32 mm ¹⁾ maximum embedmen Fable B3: Base mater Concrete temperature - 5 °C to - 1 °	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) og time and curing time Minimum curing time in dry concrete 5 h	10 h
32 mm ¹⁾ maximum embedmen Table B3: Base mater Concrete temperature - 5 °C to - 1 ° 0 °C to + 4 °	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min C 15 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) og time and curing time Minimum curing time in dry concrete 5 h 3,5 h	in wet concrete 10 h 7 h
32 mm ¹⁾ maximum embedmen Table B3: Base mater Concrete temperature $-5 \circ C \text{to} -1 \circ$ $0 \circ C \text{to} +4 \circ$ $+5 \circ C \text{to} +9 \circ$	rial temperature, gelling working time ¹⁾ C 50 min C 25 min C 15 min C 10 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) Ing time and curing time Minimum curing time In dry concrete 5 h 3,5 h 2 h	in wet concrete 10 h 7 h 4 h
32 mm1) maximum embedmenTable B3: Base materConcrete temperature- 5 °C to - 1 °0 °C to + 4 °+ 5 °C to + 9 °+ 10 °C to + 14 °	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min C 15 min C 10 min C 6 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) Ing time and curing time Minimum curing time In dry concrete 5 h 3,5 h 2 h 1 h	in wet concrete 10 h 7 h 4 h 2 h
32 mm1) maximum embedmenTable B3: Base materConcrete temperature- 5 °C to - 1 °0 °C to + 4 °+ 5 °C to + 9 °+ 10 °C to + 14 °+ 15 °C to + 19 °	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min C 15 min C 10 min C 6 min C 3 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) Ing time and curing time Minimum curing time In dry concrete 5 h 3,5 h 2 h 1 h 40 min	in wet concrete 10 h 7 h 4 h 2 h 60 min
32 mm1) maximum embedmenTable B3: Base materConcrete temperature $-5 \circ C$ to $-1 \circ$ $0 \circ C$ to $+9 \circ$ $+10 \circ C$ to $+14 \circ$ $+10 \circ C$ to $+19 \circ$ $+20 \circ C$ to $+29 \circ$ $+30 \circ C$ to $+40 \circ$ Cartridge temperature	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min C 15 min C 10 min C 6 min C 3 min C 2 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) Ing time and curing time Minimum curing time In dry concrete 5 h 3,5 h 2 h 1 h 40 min 30 min +5°C to +40°C	in wet concrete 10 h 7 h 4 h 2 h 60 min 60 min
32 mm1) maximum embedmenTable B3: Base materConcrete temperature $-5 \circ C$ to $-1 \circ$ $0 \circ C$ to $+9 \circ$ $+10 \circ C$ to $+14 \circ$ $+20 \circ C$ to $+29 \circ$ $+30 \circ C$ to $+40 \circ$ Cartridge temperature	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min C 15 min C 10 min C 6 min C 3 min C 2 min	1000 ¹⁾ / 2000 1000 ¹⁾ / 2000 drill bit system (HDB) ag time and curing time Minimum curing time in dry concrete 5 h 3,5 h 2 h 1 h 40 min 30 min 30 min	in wet concrete 10 h 7 h 4 h 2 h 60 min 60 min
32 mm1) maximum embedmenTable B3: Base materConcrete temperature- 5 °C to - 1 °0 °C to - 1 °0 °C to - 1 °+ 5 °C to - 1 °+ 5 °C to + 9 °+ 10 °C to + 14 °+ 15 °C to + 19 °+ 20 °C to + 29 °+ 30 °C to + 40 °Cartridge temperature1) t _{gel} : maximum time from	rial temperature, gellin Gelling working time ¹⁾ C 50 min C 25 min C 15 min C 10 min C 6 min C 3 min C 2 min	$ \begin{array}{r} 1000^{1)} / 2000 \\ 1000^{1)} / 2000 \\ drill bit system (HDB) \\ eg time and curing time \\ in dry concrete \\ 5 h \\ 3,5 h \\ 2 h \\ 1 h \\ 40 min \\ 30 min \\ +5^{\circ}C to +40^{\circ}C \\ to completing of rebar setting. $	in wet concrete 10 h 7 h 4 h 2 h 60 min 60 min

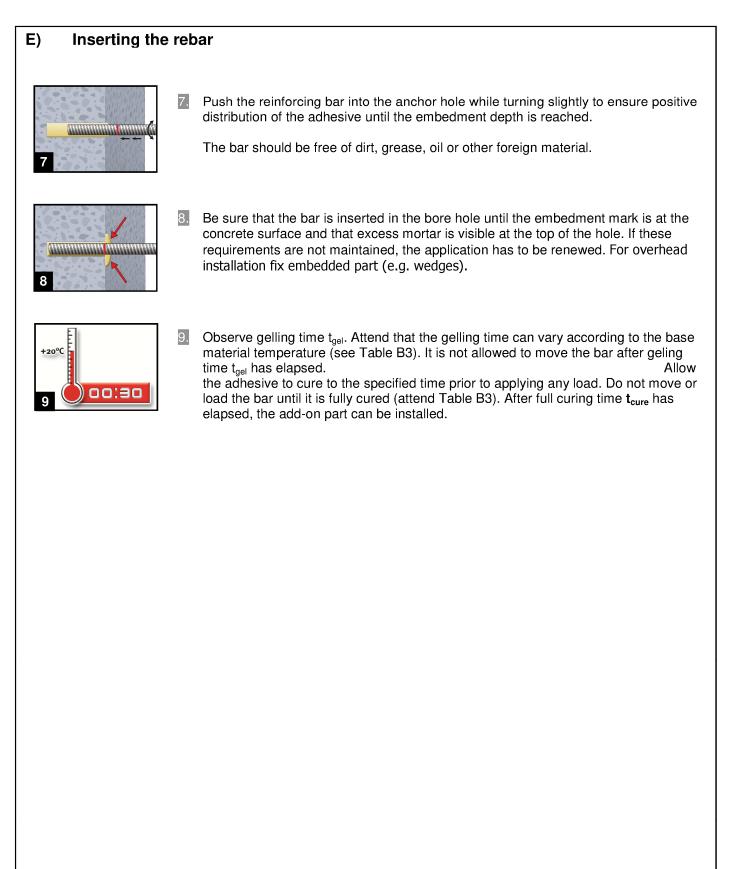
Table B4: Dispensing tools									
Cartridge type/size	На	nd tool	Pneumatic tool						
Coaxial cartridges 150, 280, 300 up to 333 ml	150, 280,								
Coaxial cartridges 380 up to 420 ml	e.g. Type CCM 380/10	e.g. Type H 285 or H244C	e.g. Type TS 485 LX						
Side-by-side cartridges 235, 345 ml	e.g. Type CBM 330A	e.g. Type H 260	e.g. Type TS 477 LX						
Side-by-side cartridge 825 ml	-	-	e.g. Type TS 498X						
	m contains the Mungo MHF	P-Clean / MHX-Clean hollow ve pressure of 230 hPa <u>and</u>							
Brush MIT-BS: ∣⁴		SDS Plus Ada	apter:						
Brush extension:	<i></i>								
*	Tel Main on								
Hand pump (volume 750 ml)	Rec. compressed hand slide valve							
Mungo Injection system	MIT-Hybrid Plus for reba	r connection							
Intended Use Dispensing, cleaning and	installation tools		Annex B 5						

Bar	Tension	Drill bit - Ø Bru		d _⊳ Brush - Ø		d _{b,min} min. Piston –		Cartridge: All sizes				side	rtridge: -by-side 25 ml)		
size	anchor					Brush -	Piston plug		or battery tool	Pneumatic tool		Pneu	matic tool		
φ	ф	HD	CD			Ø		I _{v,max}	Mixer extension	l _{v,max}	Mixer extension	I _{v,max}	Mixer extension		
[mm]	[mm]	[m	m]	MIT-	[mm]	[mm]	MIT-	[mm]		[mm]		[mm]			
8		12	-	BS12	13,5	12,5	-			800		800			
10		14	-	BS14	15,5	14,5	VS14					1000	VL10/0,75		
12	ZA-M12	1	6	BS16	17,5	16,5	VS16	700		1000	1000	1000	000	1200	
14		1	8	BS18	20,0	18,5	VS18		VS18		1000		1400		
16	ZA-M16	2	0	BS20	22,0	20,5	VS20		VL10/0,75VL10/0,75				1600		
20	ZA-M20	25	-	BS25	27,0	25,5	VS25				VI 10/0 75				
20	ZA-1V120	-	26	BS26	28,0	26,5	VS25		VL10/0,75	700	VL10/0,75		VL16/1,8		
22		2	8	BS28	30,0	28,5	VS28					2000			
24		3	2	BS32	34,0	32,5	VS32	500							
25	ZA-M24	3	2	BS32	34,0	32,5	VS32			500					
28		3	5	BS35	37,0	35,5	VS35			500		2000			
32		4	0	BS40	43,5	40,5	VS40	-						2000	


Table B6: Brushes, piston plugs, max anchorage depth and mixer extension, hammer
drilling with hollow drill bit system (HDB)

hor bit -	В	d _♭ rush - Ø	min. Brush - Ø	Piston plug		or battery	Pneu	matic tool	Draur	
	в					tool			Pheur	natic tool
			~		I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension
n] [mn	n]			MIT-	[mm]		[mm]		[mm]	
12	!			-			800		800	
14		-		VS14				VL10/0,75	1000	VL10/0,75
/12 16	;			VS16	700		1000		1000	
18	;	No cleaning required	VS18			1000				
/16 20	,		VS20				1000			
//20 25			VS25		VL10/0,75	700				
28				VS28			700		1000 VL16/1,	VL16/1,8
32	:			VS32	500					
/124 32	2			VS32	500		500			
35		VS3	VS35			500		1000		
40)			VS40					1000	
Λ	14 12 16 18 16 20 20 25 28 28 32 24 32 35	18 16 20 20 25 28 32	14 12 16 18 16 20 25 28 32 24 32 35	14 12 16 18 16 20 25 28 32 24 32 35	14 VS14 12 16 18 VS18 16 20 20 25 28 VS28 32 VS32 24 32 35 VS35	14 VS14 12 16 18 VS16 18 VS18 16 20 20 25 28 VS28 32 VS32 24 32 35 VS35	14 VS14 12 16 18 VS16 16 20 20 25 28 VS20 32 VS28 24 32 35 VS35	14 VS14 12 16 18 VS16 18 VS18 16 20 20 25 28 VS25 232 VS32 24 32 35 VS35	14 VS14 12 16 18 VS18 16 20 20 25 28 VS20 232 VS20 24 32 35 VS35	14 14 12 16 18 VS16 18 VS18 16 20 20 25 28 VS28 VS28 VS28 VS28 VS28 VS28 VS28 VS28 VS28 VS28 VS32 VS35 500

A) Bore hole	drilling	
	, remove carbonated concrete and clean contact areas (se hole: the drill hole shall be filled with mortar.	e Annex B1)
1a	1a. Hammer (HD) or compressed air drilling (CD) Drill a hole into the base material to the size and embedment depth required by the selected reinforcing with carbide hammer drill (HD) or a compressed air de (CD). Proceed with Step 2.	fill I G
	1b. Hollow drill bit system (HDB) (see Annex B 5) Drill a hole into the base material to the size and embed depth required by the selected reinforcing bar. This dr system removes the dust and cleans the bore hole du drilling. Proceed with Step 3.	illing 🕼 🔚
B) Bore hole	cleaning	
MAC: Cleaning for b	ore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le$	10d _s
2a 4x	 2a. Starting from the bottom or back of the bore hole, blow (Annex B 7) a minimum of four times. 	v the hole clean a hand pump
2b 4x	2b. Check brush diameter (Table B5). Brush the hole with d _{b,min} (Table B5) a minimum of four times in a twisting If the bore hole ground is not reached with the brush,	motion.
2c 4x	2c. Finally blow the hole clean again with a hand pump (A	nnex B 7) a minimum of four times.
CAC: Cleaning for a	l bore hole diameter and bore hole depth	
2a 2x	2a. Starting from the bottom or back of the bore hole, blow compressed air (min. 6 bar) (Annex B 7) a minimum o stream is free of noticeable dust. If the bore hole grou extension shall be used.	f two times until return air
2b 2x	 2b. Check brush diameter (Table B5). Brush the hole with > d_{b,min} (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, (Table B5). 	
2c 2x	2c. Finally blow the hole clean again with compressed air minimum of two times until return air stream is free of ground is not reached an extension shall be used.	
Mungo Injection sys	tem MIT-Hybrid Plus for rebar connection	
Intended Use Installation instructior		Annex B 7



Page 18 of European Technical Assessment ETA-17/0130 of 7 June 2019

English translation prepared by DIBt

Mungo Injection system MIT-Hybrid Plus for rebar connection

Intended Use Installation instruction Annex B 9

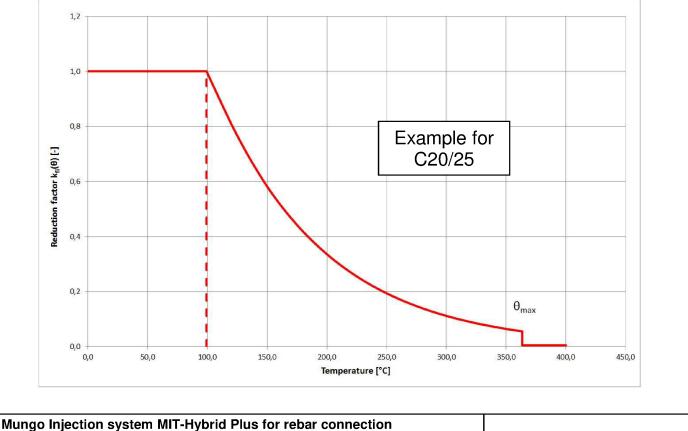
Minimum anchorage length and minimum lap length The minimum anchorage length $\ell_{\text{b,min}}$ and the minimum lap length $\ell_{\text{0,min}}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{lb} according to Table C1. Table C1: Amplification factor α_{lb} related to concrete class and drilling method **Concrete class Drilling method** Bar size Amplification factor α_{lb} 8 mm to 32 mm C12/15 to C50/60 All drilling method 1,0 ZA-M12 to ZA-M24 Table C2: Reduction factor k_b for all drilling methods **Concrete class** Rebar - Ø C12/15 | C16/20 | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 φ 8 to 32 mm 1,0 ZA-M12 to ZA-M24 Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good conditions $f_{bd,PIR} = k_b \cdot f_{bd}$ with f_{bd}: Design value of the ultimate bond stress in N/mm² considering the concrete classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010. (for all other bond conditions multiply the values by 0.7) k_b: Reduction factor according to Table C2 Rebar - Ø **Concrete class** C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 φ 8 to 32 mm 1,6 2.0 2.3 2.7 3.0 3.4 3.7 4,0 4,3 ZA-M12 to ZA-M24 Mungo Injection system MIT-Hybrid Plus for rebar connection

Performances	Annex C 1
Amplification factor α_{b}	
Design values of ultimate bond resistance f _{bd,PIR}	

Design value of the ultimate bond stress fbd,fi under fire exposure for concrete classes C12/15 to C50/60, (all drilling methods):

The design value of the bond stress f_{bd,fi} under fire exposure has to be calculated by the following equation:

 $\mathbf{f}_{bd,fi} = \mathbf{k}_{fi}(\mathbf{\theta}) \cdot \mathbf{f}_{bd,PIR} \cdot \mathbf{\gamma}_{c} / \mathbf{\gamma}_{M,fi}$


 $k_{fi}(\theta) = 30,34 \cdot e^{(\theta \cdot -0,011)} / (f_{bd,PIR} \cdot 4,3) \le 1,0$ $\theta \leq 364^{\circ}C$: with: $\theta > 364^{\circ}C$: $k_{fi}(\theta) = 0$

> $\mathbf{f}_{\text{bd,fi}}$ Design value of the ultimate bond stress in case of fire in N/mm²

- Temperature in °C in the mortar layer. θ
- Reduction factor under fire exposure. k_{fi}(θ)
- Design value of the ultimate bond stress in N/mm² in cold condition according to Table C3 f_{bd,PIR} considering the concrete classes, the rebar diameter and the bond conditions according to EN 1992-1-1:2004+AC:2010.
- partially safety factor according to EN 1992-1-1:2004+AC:2010 $\gamma_{\rm c}$
- partially safety factor according to EN 1992-1-2:2004+AC:2008 YM.fi

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress fbd.fi.

Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

Performances

Design value of bond strength f_{bd.fi} under fire exposure

Annex C 2

	Characteristic tension strength for tension anchor ZA under fire exposure, concrete classes C12/15 to C50/60, according to Technical Report TR 020									
(concrete cl	asses C12/	15 to C50/60), according to I	echnical Repor	t TR 020				
Tension Anchor	r			M12	M16	M20	M24			
Steel, zinc plated	d (ZA vz)									
	R30			20						
Characteristic	R60	σ _{Rk,s,fi}	[N] //mage/201			15				
steel strength	R90		[N/mm²]			13				
	R120					10				
Stainless Steel (2	ZA A4 or Z	A HCR)								
	R30				30					
Characteristic steel strength	R60	σ _{Rk,S,fi}	[N/mm²]	25						
	R90			20						
	R120				16					
Design value	of the s	teel strer	ngth $\sigma_{\scriptscriptstyle Rd,s,fi}$	under fire ex	cposure					
The design value equation:	e of the ste	el strength	$\boldsymbol{\sigma}_{\scriptscriptstyle{Rd,s,fi}}$ under	fire exposure ha	as to be calcula	ted by the followin	g			
$\mathbf{O}_{\mathrm{Rd,s,fi}} = \mathbf{I}$	$\sigma_{_{Rk,s,fi}}$ / $\gamma_{_{M,fi}}$	fi								
with:										
$oldsymbol{\sigma}_{ extsf{Rk,s,fi}}$ $\gamma_{ extsf{M,fi}}$			-	n according to T ding to EN 1992		2008				
/ M,fi	pa	tiany salety			. 1 2.200447.0.	2000				
Mungo Injectio	n system I	MIT-Hybrid	Plus for reb	par connection						
Performances						Anne	« C 3			

Design value of the steel strength $\sigma_{\rm Rd,s,fi}$ for tension anchor ZA under fire exposure